10 research outputs found

    The Design and Use of Tools for Teaching Logic

    Get PDF

    Generating hints and feedback for Hilbert-style axiomatic proofs

    Get PDF

    Accurate evaluation of the interstitial KKR-Green function

    Full text link
    It is shown that the Brillouin zone integral for the interstitial KKR-Green function can be evaluated accurately by taking proper care of the free-electron singularities in the integrand. The proposed method combines two recently developed methods, a supermatrix method and a subtraction method. This combination appears to provide a major improvement compared with an earlier proposal based on the subtraction method only. By this the barrier preventing the study of important interstitial-like defects, such as an electromigrating atom halfway along its jump path, can be considered as being razed.Comment: 23 pages, RevTe

    Providing Hints, Next Steps and Feedback in a Tutoring System for Structural Induction

    No full text
    Structural induction is a proof technique that is widely used to prove statements about discrete structures. Students find it hard to construct inductive proofs, and when learning to construct such proofs, receiving feedback is important. In this paper we discuss the design of a tutoring system, LogInd, that helps students with constructing stepwise inductive proofs by providing hints, next steps and feedback. As far as we know, this is the first tutoring system for structural induction with this functionality. We explain how we use a strategy to construct proofs for a restricted class of problems. This strategy can also be used to complete partial student solutions, and hence to provide hints or next steps. We use constraints to provide feedback. A pilot evaluation with a small group of students shows that LogInd indeed can give hints and next steps in almost all cases

    Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing.

    Get PDF
    Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations
    corecore